Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth
نویسندگان
چکیده
In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.
منابع مشابه
CRT1 is a nuclear-translocated MORC endonuclease that participates in multiple levels of plant immunity.
Arabidopsis thaliana CRT1 (compromised for recognition of Turnip Crinkle Virus) was previously shown to be required for effector-triggered immunity. Sequence analyses previously revealed that CRT1 contains the ATPase and S5 domains characteristic of Microchidia (MORC) proteins; these proteins are associated with DNA modification and repair. Here we show that CRT1 and its closest homologue, CRH1...
متن کاملIdentification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity.
Pathogen-associated molecular patterns (PAMPs) trigger plant defenses when perceived by surface-localized immune receptors. PAMP-triggered immunity (PTI) plays a vital role in the resistance of plants to numerous potential pathogens. MicroRNA (miRNA) biogenesis is known to be important for PTI, but miRNA species involved in this process have not been fully explored. Here we show that the Arabid...
متن کاملBrassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1.
Plants and animals use innate immunity as a first defense against pathogens, a costly yet necessary tradeoff between growth and immunity. In Arabidopsis, the regulatory leucine-rich repeat receptor-like kinase (LRR-RLK) BAK1 combines with the LRR-RLKs FLS2 and EFR in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and the LRR-RLK BRI1 in brassinosteroid (BR)-mediated growt...
متن کاملPattern-recognition receptors in plant innate immunity.
Perception of pathogen-associated molecular patterns (PAMPs) constitutes the first layer of plant innate immunity and is referred to as PAMP-triggered immunity (PTI). For a long time, part of the plant community was sceptical about the importance of PAMP perception in plants. Genetic and biochemical studies have recently identified pattern-recognition receptors (PRRs) involved in the perception...
متن کاملETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis.
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) trigger plant immunity that forms the first line inducible defenses in plants. The regulatory mechanism of MAMP-triggered immunity, however, is poorly understood. Here, we show that Arabidopsis thaliana transcription factors ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3-LIKE1 (EIL1), previously known to mediate ethylene signa...
متن کامل